Molecular modeling of lipid drug formulations
نویسندگان
چکیده
Lipid formulations can improve the bioavailability of drugs that have low aqueous solubility. A variety of chemical compounds, including triglyceride oils (lipids), fatty acid esters and surfactants, can be included in lipid formulations. This heterogeneity makes spectroscopic study of the in ternal structure of formulation difficult. Understanding of lipid formulations at a molecular level will greatly improve our knowledge of in vivo dispersion and solubilisation patterns of lipid formulations. Molecular dynamics studies have provided useful insight into the structure and dynamics of different types of aggregates, including mixed glycerides with and without propylene glycol [1] and bile salts [2]. To date, such studies have not been performed on lipid drug formulations . The objective of this research is to develop a molecular dynamics protocol to examine the interaction between drugs and formulations at the atomic level. To evaluate and parameterize the force field of choice we are calculating Gibbs free energy of solvation of a number of alcohols and short poly -(ethylene glycol) polymers. Following this, the aggregation behaviour of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), sodium glycochenodeoxycholate (GDX), different digestion products and polyethylene glycol surfactants will be investigated. Moreover, the phase diagram s of three component systems composed of i) bile salts, digested products and water and ii) surfactants, lipids and water will be modelled. Simulations are being performed using the molecular dynamics software suite GROMACS. Calculations are being performed on a high performance computing cluster at the Victorian Life Sciences Com putation Initiative (VLSCI). The methods highlighted in this study will prove to be an essential tool for formulators of lipid systems for oral administration. Published: 1 May 2012
منابع مشابه
Toxicity and bioactivity evaluation of interferon alpha-2b conjugated with solid lipid nanoparticles
Background: Interferon (IFN) are small proteins that belong to the cytokine family and may interfere with viral infections and some cancers. There are many studies focused on the PEGylated interferon’s bioactivity. In this study, we used solid lipid nanoparticles (SLNs) to produce new drug formulations, with the aim of reducing costs, increasing effectiveness, and also reducing side effects, an...
متن کاملPhytosome: Drug Delivery System for Polyphenolic Phytoconstituents
Several plant extracts and phytoconstituents, despite having excellent bioactivity in vitro, demonstrate less or no in vivo actions due to their poor lipid solubility or improper molecular size or destruction in gut. Drug delivery system for polyphenolic phytoconstituents (phytosomes) was prepared by complexing polyphenolic phytoconstituents with phospholipid mainly phosphatidylcholine wh...
متن کاملSafranal-loaded solid lipid nanoparticles: evaluation of sunscreen and moisturizing potential for topical applications
Objective(s): In the current study, sunscreen and moisturizing properties of solid lipid nanoparticle (SLN)-safranal formulations were evaluated. Materials and Methods:Series of SLN were prepared using glyceryl monostearate, Tween 80 and different amounts of safranal by high shear homogenization, and ultrasound and high-pressure homogenization (HPH) methods. SLN formulations were characterized ...
متن کاملClindamycin Phosphate Absorption from Nanoliposomal Formulations through Third-Degree Burn Eschar
BACKGROUND It has been shown that topical nanoliposomal formulations improve burn healing process. On the other hand, it has been shown that liposomal formulations increase drug deposition in the normal skin while decrease their systemic absorption there is not such data available for burn eschar. Present investigation studies permeation of clindamycin phosphate (CP) through burn eschar from l...
متن کاملMathematical Modeling and Release Kinetics of Green Tea Polyphenols Released from Casein Nanoparticles
Drug release kinetics plays an important role in determining the mechanism of drug release, which in turn helps in formulating controlled/sustained release formulations.In our study, different concentrations of green tea polyphenols (GTP) were encapsulated into casein nanoparticles which showed a maximum encapsulation efficiency (76.9%) at a GTP concentration of 5 mg/mL. The casein nanopa...
متن کامل